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INTRODUCTION 

The problem we wish to investigate is that of the elastic stability 
of thin circular conical shells under uniform external pressure.  Both 
conical frustra and complete cones are to be considered. 

In those cases of shell stability where it is difficult or impossible 
to solve the problem exactly, the direct methods of the variational calculus 
deserve special attention.  The more complex the .problem, the more advan- 
tageous is the use of such methods. 

Several theoretical investigations of the problem of conical shell 
stability employing an energy procedure have been carried out in recent 
years without resolving the problem.  One of the underlying problems of 
stability analyses, and the probable source of much of the disagreement, 
is that they are beset with considerable algebraic and numerical difficul- 
ties which necessitate the introduction of approximations.  None of these 
approximate theories yield results in close agreement with one another or 
with experiment over a wide range of geometries. 

In the interest of simplicity most investigators simplify the problem 
by neglecting, in the strain energy expression, those displacement terms 
of cubic and higher order, and employing the principle of virtual displace- 
ments.  This states, "Of all the displacements satisfying given boundary 
conditions, those which also satisfy the equilibrium conditions make the 
total potential energy, -n,   assume a stationary value." In variational 
terms, this corresponds to setting the first variation of the total poten- 
tial energy equal to zero. 

However, such a procedure minimizes the influence of rotation terms 
on the deformation.  In thin flexible bodies such as shells, this implies 
an effective stiffening of the shell and a higher estimate of the critical 
load. 

The object of this investigation is to present a systematic procedure 
to account more adequately for the influence of rotation effects in thin 
shells.  We first introduce a form of strain displacement relations in 
which specific emphasis is placed on the rotation terms.  Next, higher- 
ordered terms are retained in the expression for the total potential energy 
of the system, and an appropriate stability criterion is formulated. 

Now, if a functional such as TT  is quadratic in its independent vari- 
ables and their derivatives, a stationary value is unique provided it 
exists.  (The Euler equations and the natural boundary conditions are 
linear.)  If the functional is of higher order in its independent variables, 
multiple stationary values may exist.  (The Euler equations are nonlinear. ) 
This introduces the possibility of alternative equilibrium positions some 
of which are stable, others not.  An equilibrium position is designated as 
as stable when the virtual work is negative for all admissible "virtual 
displacements," i.e., when additional external forces are necessary to 



displace the system from its equilibrium position.  In variational nota- 
tion, an extremal defining a stable equilibrium position must maximize 
the work functional or minimize the total potential energy functional, 77. 
Since (for small virtual displacements) an extremal is a minimum when the 
second variation is positive definite (i.e., positive for all admissible 
argument functions in the neighborhood of the extremal), the criterion 
for stable equilibrium is 8g77 > o.  By the same token, an unstable equil- 
ibrium position is characterized by Sg77 < °«  Hence the condition for the 
onset of instability for thin shells is bgr  = o. l 

The theory thus formulated is valid for small virtual displacements 
about the equilibrium position, and is sometimes referred to as the in- 
finitesimal theory of buckling.  It was first proposed by Trefftz2 and 
was employed in the study of the buckling of cylindrical shells under 
external pressure by Langhaar and Boresi.8 and more recently, in the 
analysis of the buckling of a cylinder under circumferential band loads 
by Brush and Field.4 

The procedure outlined, with the general strain-displacements given 
in Appendix A, is, then generally applicable to the stability of thin 
shells.  Explicit estimates of critical loadings may be made with the aid 
of the Rayleigh-Ritz method.  It is shown in the body of the report, 
however, that in using this method care must be taken to select a set of 
displacement functions which are realistic over the entire range of geom- 
etries to be considered. 

DERIVATION OF POTENTIAL ENERGY OF THE SYSTEM 

We consider the problem of the elastic stability of a conical shell 
to be one in the nonlinear theory of elasticity, with small strains and 
small but finite deflections. 

An appropriate formulation of the strain-displacement relations for 
such a problem is derived in Appendix A in terms of the thin shell coor- 
dinate system (a^,ag,z), where a^a^  are lines of principal curvature on 

the shell's middle surface, having principal radii of curvature R-^ and Rg, 

and Lame coefficients HpHg of the form 

Hx - Aid + Z/Ri) 

H2 - Agd * VR2) , 

and z is the thickness coordinate, normal to (a-,,ag).  In terms of the 

middle surface displacements (u,v,w) in the (a^a^z) directions, the 
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strain displacement relations may be written as 

ell " ell + ^ (w2 + ^ ' + z' 
knn  _ ^13 + ,.,_ [k12 ~ k21 Lll Cur, 

e22 " e22 + ^   ("^i    + w3  )   +  z' k22  + -JT^ + «3 
p!2 " k21 
L  2  _ 

-\ 

>    ID 

612 " e12 +  e21 _ "1^2 +  z< 
V      ♦ 1c       +i^l3      "8*23 k12 + *21 + 5~     —5— 

where: 

'11 
_1_ Bu v    BA]^    _w_ 
Al BÖ-! + I^Ag" Bag" + Rl 

1   Bv uBAi 
e12 

s 

Al Ba^ AlA2Ba2 

1 Bw u 
e13 s 

AT Bo., "% 

2w1 a -4> 1 
+ — 

A2 

Bw 

Ba2 

V 

«2 

2^3 
m 

1 
A 

Bv u 
A. A. 

BAX 

*\ 

_1_  Bu v    BAp 
21      A2 Bag      AjAg Baj^ 

1  Bv u    3Ap       w 
22      A2 ^2      A1A2 '**1      R2 

1  Bw v 
e23  " Ag Bag      Rg 

1  Bw u 
,aw2" * "A; *; * RT 

1     Bu v     BAc 
>(2) 

Ag    Bag      A^g Ba1 

11      AT  Ba-,      A-,AP Bap      A/   1      21      Ag    Bag      j^Ag    Baj^ 

L12 

'13 

ll °"1 A1A2 ra2 

1   3<A 0    BA-L 

A-L Ba^ AjAg Bag 

1  B# 
A^ Ba^ 

- 4>/Ri 

k22 " ~ 

L23 

1     B0 <£      BAp      v. 
A      5" + 77   7^ + */R2 Ag    Bag      A^g    Bai 

B^/Bap - 0/R£ 



and, finally, 

4>  = - e 13 0 '23 %  = ell + e22 (3) 

We may further simplify these relations and still retain the same 
degree of approximation already inherent in them by observing that con, 
the component of rotation about the z axis, will be very small compared 
to the remaining components of rotation co-^  and wg.  This is so because 
the shell is very stiff ("massive") in its own plane.  Accordingly we may 
omit the nonlinear terms containing con  in the above expressions for the 
strains. 

We may specialize to conical geometry with the aid of Figures 1A 
and IB.  For conical coordinates: 

Al -1 Ri 
= o 

>  (4) 

dp = 6 Ag ■ r = Rg sin a ■ RQ - £ cos a 

and the appropriate nonlinear strain-displacement relations are: 

11   ^      w 

r \W 
ee  - e22 = ~ \™ ~  u cos a  + w sin aJ+ -£Z la? "  V 81 

1    /Bw v n al 

Bv       1 /Bu \       1    Bw /Bw \ 
Jea ■ £ro «■ —  + —   — +  v cos a     + — v sin a I 
'ie      12    B£      r \W )       T    B£  \W ) 

Ki = Kll 
B^ 

B£2 

1  /B2w 
K* " K22 - --jl^riy- si r* VB0 

/B2w Bv\ 
 n- -  sin a  

VB62 W) 

cos a Bw      sin a    Bu 
+      r      B£ +      r        BF 

sin a /Bv 
+ g-— [— - u cos a  + w si 

BÖ 
n al 

K£0  =K12 —    2 
B^ 

B£B0 

Bv^    2 cos a /Bw 
sin a 

B£ BÖ 
v sin a 

>•    (5) 



It should be pointed out that the derivation of equations 1 involves 
no order of magnitude estimates on the relative values of the displace- 
ments themselves, but only on the over-all character of the deformation. 
For this reason it is believed they are more generally applicable to the 
stability problem of shells.  For example, in formulating Donnell's 
equation, the number of circumferential waves in the buckling pattern is 
assumed to be large. On this basis, w is assumed to be small compared 

B2*» Bw 
with 

B02 
, and v is assumed negligible compared with 

B0 

The strain energy of a conical shell is given by 

u - um ♦ ub 

where 

^ - itfb?) C -C hJ +
 effZ +  2v efee ♦ f?M rd0d£ 

(6) 

Ub " ilCTj 4   £ (K^ + K*Z + ***** + 8<1-")^8) rdö<* 
}    (7) 

where E • Young's modulus, v  ■ Poisson's ratio and h = shell thickness. 
Finally, the potential energy of the system is given by 

77 "  Um + Ub - Uext (8) 

where Uexi  is the change in potential of the external forces.  In 
Appendix B we have shown that for an external pressure p, 

Uext - p sin a  //(f + u){vf(wö-v)-(R + w)^(vfl + w + r)}d£d0 

+ P 81 in aj-^* e(A1  ♦ Ag) --^ (A2 ♦^A1A2J| 
>  (9) 

where AT and Ag are the cross-sectional areas at the top and bottom of 

the cone, and e is the average extension of the ends of the cone. 
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DETERMINATION OF DISPLACEMENT FUNCTIONS 

The Rayleigh-Ritz procedure is a convenient technique for approxi- 
mating the solution of buckling problems where exact solution is difficult. 
It results in an upper bound estimate for the critical load. The method 
involves assuming a form for displacements which satisfies the boundary 
conditions and which contains a set of arbitrary parameters. These para- 
meters are then chosen to optimize the quantity desired. 

Ideally, the chosen set of displacement functions should also present 
a reasonable description of the actual displacements occurring during the 
deformation of the shell. The estimate of the critical load is fairly 
sensitive to the choice of displacement functions. 

Another way of expressing this is that an optimal set of displacement 
functions used in a Rayleigh-Ritz procedure is one which yields a good 
approximation to those displacements which actually satisfy the equilibrium 
equations of the shell and yet remain simple enough in form to be of prac- 
tical benefit. 

Niordson6 and Radkowski6, 7 employed the (cylindrical) displacement 
functions 

u-^ - A cos n 6 cos 77^/^ 

v-j_ » B sin n 6 sin irg/^ 

w-j_ ■ C cos n 6  sin 77^/^ 
J 

(10) 

which satisfy conditions of simple support at both ends of a truncated 
cone and are also the exact solutions for a cylindrical shell of finite 
length. They apparently yield satisfactory results for very short conical 
frustra.  In terms of the important "taper ratio" parameter ß  B (1 cosa)/ro, 
these functions are good estimates of the buckling pattern for ß  small 
compared with unity. Niordson limited the application of his results to 
ß <  1/3. Radkowski retained terms neglected by Niordson and thereby ex- 
tended the range of application of his results, but found that as ß 
approached unity, these displacements introduce a singularity into the 
expression for p cr* 
his results to oomplete cones 
functions 

Radkowski used a physical argument to extrapolate 
Grigolyuk8 selected the displacement 

Ui ■ AT* cos £) sin n 6 

VJL ■ Br^ sinf— cos n 6 

w-, ■ Cr'2 sinf—lain n 6 

(11) 
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which satisfy the apex conditions for a complete cone: 

u = v = w = u, r = v, r»w, r = o at r > o. 

However, they are not satisfactory for a truncated cone unless modified 
somewhat.  For example, a more satisfactory form for w-^ for truncated and 
complete cones might be: 

W"L = Cr2 sin rr 
( r  - ro^ 
{ri- TO)  sin n 6 

The buckling displacement functions employed in the present investigations 
are of the form: 

Un "  A 

v-L = B 

f^W-l^ + f2(/3) cos (ar + b) cos n 6 

fjjWJL] + fg(0) Lin (ar + b) sin n 6 

w. ■CHl(^)  + f2(^]8in (ar + b) cos n 6 

(12) 

where 
7T 771*0 

a s    b =-  
i"i - ro     r-^ - ro 

and 

while: 

f±(ß)  - 1, tz(ß)  - o  as ß - 1 

t^ß)  - o,  f2(/3) - l  as ß - o. 

It may easily be seen that this choice of displacements satisfies 
suitable edge conditions for both complete and truncated cones. Moreover, 
for suitable f-, and fo it should reproduce the dependence of the buckling 
pattern on the slant length of the cone - viz.:  for short frustra the 
dimpled region extends over a much larger percentage of the slant length 
of the cone. 



In particular, Figure 2 contains a plot of w]/wi max. as a function 
of the slant length, ^/-i,   for several values of ß.     In this graph we have 
selected 

2/3    f? (ß)  - (1 - ß)Z. M/8) l + ß 2 ' (13) 

Examination of Figure 2 points out why one would not expect the Niordson- 
Radkowski displacements (ß = o)   to be suitable for complete cones ß * 1, and 
conversely, why Grigolyuk's functions {ß = l) would not be suitable as /3-o. 

On the other hand, Seide9 who has employed a power series solution 
of the equilibrium equations has also computed the displacement w which 
emerges from his solution.  A comparison of Figure 2 with his results 
indicates very good qualitative agreement. 

Our displacement functions in final form, then, are: 

u = u0 + A 

v0 + B 

w = wQ + C 

1 + ß2   \To) 

1 + ß* 

* (1 - ß)' 

* (1 - ß)'1 

-\ 

cos (ar + b) cos n 8 

2ß 
1 + ßc ® -  ♦ (1- ß)'' 

sin (ar + b) sin n 6     \  (14) 

sin (ar + b) cos n 8 

where we recall that uQ, vQ and wQ are to be determined from the linear 
(pre-buckling) theory. 

If we assume that the pre-buckling state of the shell is adequately 
described (away from the edges) by the membrane theory of thin shells, 
then we may write for the direct stress resultants in the cone: 

Nj 
pr 

. N6 
pr 

^    2 sin a   "    sin a 

From the linear strain-displacement and stress-strain laws we have 

(15) 

Bu   1 , 

•10- 



so: 

(l-2v) pr2 
un =  . (16) 

4Eh sin a cos a 

To find wQ we have: 

ee  = —- (N0 - vNg)   - —    (w sin a -  u cos a) , 

so: 

w0*- 
5Pr%  . (17) 0   4Eh sin2 a 

Due to rotational symmetry prior to buckling, vQ = o. 

DETERMINATION OF THE BUCKLING LOAD 

The stability of the system can be investigated by considering a 
virtual displacement from a loaded but unbuckled equilibrium configuration 
and examining the corresponding second variation of TT. 

If to u0, v0 and w0 (the pre-buckling equilibrium configuration) are 

added the (virtual) displacements u-i, v-i and w-i then n becomes: 

8 nTT 8 rzTT 8 ATT 
77   +   A77   =   77+S-,77+   ——    +   —$—   +   —^— (18) 1 2! 3! 4! 

where S-^ is linear in Up v-^, w-^ 

Sg77 is quadratic in these variables, etc. 

Substitution of the chosen forms for the displacements into the ex- 
pression for the total potential energy TT  and integration of the resulting 
definite integrals is a straightforward, if tedious procedure.  The expres- 
sion for So77 then has the form: 

S2W " &11A2 + 2a12AB 
+ 2a13AC + a^B2 + 2a23BC + a33C

2 (19) 

where the a^ will be defined momentarily. 

-11- 



The system will be  in stable equilibrium if 8O7T > o,   unstable if 
8g7T < o.     Hence the condition for the onset of instability is 

827T = o, (20A) 

or,   in view of the fact that Sg-rr is a quadratic  form in terms of A,   B,   C: 

lll 

a21 

l12 

l22 

l13 

l23 

a31 a32        a33 

120B) 

Each of the terms a^ may be written in the form 

lij   " aij   +T^ij (21) 

Hence the stability criterion is obtained from a solution of Equation 20B 
for p/E.  Upon expanding this determinant into a cubic equation in p/E, 
it was observed that the cubic and quadratic terms could be neglected com- 
pared with the constant term and the term linear in p/E.  The resulting 
equation, when solved for pcr/E yields: 

Per   all(a232 " a22a33) + a122a33 + a22a132 " 2a12a13a23 
E Jan(a22/333 + o-szfizzJ-Za-iio-zzfizz-o-iz^zz  + 2a12<alöö23 + a23^13) 

- ^22^13^13 " ^^lS2] • (22) 

In arriving at the expressions for the a^.-, the following simplifying 
approximations were made:  (a) Quadratic terms in the pre-buckling dis- 
placements uQ, vQ and wQ (which are directly proportional to p/E) were 
neglected; (b) Fourth degree terms in Ui, v-^ and w^ were neglected; 
(c) In view of the form of the chosen displacements 

e.g. Wi f±{ß)  (—1 sin(ar + b)cos n d  + f2(ß)sin(ar + b)cos n 6 

■12- 



each aji   is of the form: 

aij   =  f1
2(/8)(aijI)   +  f2

2(/8)(aijII)   +  t^ß)tz(ß) (aijm).   (23) 

Now, apart from their values as ß  approaches zero and unity, the forms of 
f^ and fg were left unspecified.  We now require further that f^ and fg 
be chosen such that the cross-product terms become negligible.  The amount 
of error introduced by this approximation can be systematically evaluated 
and reduced by the judicious choice of f^ and fg. A little experimentation 
reveals that the forms chosen in Equation 13 are quite satisfactory: i.e. 
neglecting the cross-product terms does not significantly affect the deter- 
mination of the buckling load.  We may, then, regard aj.- to be of the 
form: 

aij = t&ß) aij +T^ij ♦ fpz(ß) a 
ij 

(24) 

where the single and double asterisks indicate the contribution from the 
first and second portions, respectively, of the assumed displacement forms. 

Omitting an unessential constant factor Eh/2(l-v2), the non-vanishing 
ajj and ß^**are  given by: 

all 
.       h2sin2a 

7rcosa.<  I*  +  Ö-     II* 
12 ro2 

a-.g = mr< III*  + 
h2sin2a 

6 ro2 IV" 

a13  = w sin a' III*  + 
12 ro' 

\U +  sin^a)   IV* -  cos^aVI 3 
* 

a22 cosa 

IT    I   o * , o    a.      h2sin2a i      0 
— \r^ VII*  +  2(l-v)cos2aX*  +  ^ __g      4n2 XIII* 

12 ro 

ia r 

+  2(l-v)cos2aXII* 

(25) 

ftga  ■ - n7rtana VII* + 
.12 ro< 

2(n2 + sin2a)XIII* -   2 cos2aXIV* 
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a.,7,1  =  - ticos a.   « tan 
h2     r~ 3a(VII*)   +  Ö    cos2a(XI*  + XII*) 

12 ro^  |_ 

2(n2 +  sin2a)XVII*  +  2v cos2a XVIII*  + 8(l-v)n2 XII* 

(n2  +   3iri2a) 
+  XIII* 

cos2a 
+ 8(l-^)(n4-2n2)) 

"is ■ T ~A (T) V* 

* ntana  iro\ 
ß22 ' —A IT) 

'23 
nw 

4cosa (T) 

„, -12(1 -v)lX* , Pl VIII*  ■—*-*    + 8(l-v2 XIX* 
tan^a. 

VIII* -  6(1-2v)cot2a  IX*  + 8(l-v2)8ina XIX* 

(25) 

/Ö33 =  377-cota (l- 2v) [—J XV*  +—:L-z- XVI*  +  tan2a   (A1'v    I XIX* 
'""^ \     1 - Zv I 2cosc,a 

where I* through XIX* are polynomials in ß,   and are tabulated in 
Appendix C(a). 

** ,** 
The components a^*  and ß^;  arising from the second portion of the 

displacement functions may be evaluated in terms of the Sinus and Cosinus 
integrals as follows: 

** 
all = - 

7Ä;osa. 1       l\ ** — - — + pcosalp  + 
\Z      ß) 2 

**  h2sin2a 

12 ro2 
/Scosal^ 

?      ** Ir. ** + •nr'cosal^ Iß  + 77COsaIr, 

a 
** 
12 

n 

2 

„ **    p  h2sin2a \~   **     **] 

** 
L13 

** 
/Ssinala   i/w^sina  h^s 
 :2-   +     +   

2 2 24 

ina n,/' 
roö L_ 

+  sin*u)l5 
** 

+ 772(l + v)cos2aI,j//ö  + vTr^cos2a//ö2  +   277lg  cos2a 

(26) 
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a 
** 
22 

+  2TTIQ   ( 

o   ** 

n2  + sin2a) 

nalT"/Stana „         /l 
 -  +    (1 - V)77JCOSa — 

s ina \ p I) h2sin2a 

12 ro^ 

4^Ig*(n2 + [~2(l- vfjcos2a)/cosa + 2(l - v)772cosaI2 /ß 

** 
+ 477(1 - vjcosalij, 

** 
a23 = n< 

**      h2sin2a 
ptanaln     + 5- 1        12 ro^ 

** 
4(n^ + sin^al/Slfi 

8ina cosa 

a 33 

4iTT2cotaI1         8(l - v)772cotalo , 
 0 l ß ~   +  16{1'V 

+ 7rcotal5*(2  +  12[l-v]    f 

**      h2sin2ar"7r5cosa      1      1 
yStanasinal-,     + 73- — 

J- 1 9 -rnü  \ 2ß 

)/ScotaIg 

12 ro< 2tan2a    /3      2 

/3(n2 + sin2a)   IA        7r2(cos2a + 8n2(l-v)lP cosa 
+ — w- -—SL   + *— c  

sincacosa psin2a 

2v772(n2 +  sin2a)l-,  cosa      8(l - v)n4pcosaI6 
+  -T—2 A  +  r-B  

psin^a sin°a 

Trcosal7   ( ri2[9 -8^]   + sin2a~] 

sin2a _J 

fl 13 
3(1  ♦ v)TT2ß{2 " /gj(cot2a)   /ro_\ 

4 [ h) 

ß 
** 
22 /Stanaf— • (T) 

V7r(l-2i/)       3(1 - v)77COt2a        TT(1-V
2

) 
  +       +   

+   (1 - v/Z) 
-**       #IiO  . ^ll —±*- + j^ 

(26) 
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** ßajTS 

cosa 

(2-") 
277 

in2a    /ro^J 3(1 
ä l"hj1 

-2v)cot2a  v(l-2v)   (l-v2)sina 

r ** 2ß_    **  _^2_  **-| 
L 8 "77  J10 + ,,2 JllJ 

,** 
4w ■ 0 (T) (cota) 

_ n8(g-v) r 
cos2a  I  

3V77   (l-2v)n277^        ~   p 
 5  77 (1 - vc) tan^a 
2      2cos4i 

** 2ßl*n        ßZ    ** LM.    + 
77 77' 11 

+ TT- 
6  477^/^2 

1 - *>(l-2v) f-<-r-v- \8  2 |_4w   12_ W 
"MTH1"?)^) 

(26) 

where 1-^ through I-Q are in turn given in terms of the Sinus and Cosinus 

Integrals, and are tabulated in Appendix C(b). 

RESULTS AND DISCUSSION 

Equations 23, 35 and 36 determine the value of the critical pressure. 
These relations were programmed for a digital computer and Pcr/E was deter- 
mined for the following set of parameters: 

a = 15°, 30°, 45°, 60°, 75°, 85° 

h  h sina 

ro 
.02, .01, .005, .002, .001, .0005, .00035 
and .0001 

ß  = .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1.0 

and v  = .3 in all cases. 

Ylhen these parameters are inserted into Equation 22, Pcr/E still 
remains a function of n-^ the number of lobes in the circumferential direc- 
tion.  Since we are seeking the minimum buckling load, pcr/E was minimized 
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with respect to n, subject to the restriction that n is an integer greater 
than one.  The results of these computations are plotted in Figures 3 
through 8. 

Comparison of these curves with the corresponding results of Radkowski 
(Reference 6) reveals that the present results are, in general, lower esti- 
mates of pcr/E.  The difference between the results diminishes for small ß, 
where the conical frustra behaves more like a cylinder, and where Niordson 
(Reference 5) and Radkowski (References 6 and 7) are essentially in agree- 
ment.  The difference in results, then, reflects the ß  dependence of the 
buckled shape.  Furthermore, our results verify Radkowski's (Reference 6 
and 7) physical hypothesis that when plotted versus /3, Pcr/E does not in- 
crease significantly from its minimum value (attained at or near ß  = .6) 
as ß  tends toward unity. 

The results obtained in this report for complete cones [ß  = l), when 
compared with the corresponding results of Grigolyuk (Reference 8) are sub- 
stantially lower for larger values of h/p.  As h/p decreases, the difference 
between the results diminishes, and for very small values of h/p, (very thin 
shells) the two solutions would apparently coincide. 

A comparison of our results with those obtained by Seide (Reference 9) 
is complicated because of the difference in the selection of parameters and 
the sensitivity of the results when interpolation is used.  For this reason 
we have computed pcr/E for the same parameters employed in Reference 9 for 
two values of the angle: a = 85° and a = 30°.  The ratio of our results to 
Seide's results for these parameters is given in Table I. 

Inspection reveals that the results of this report seem to be in closer 
agreement with the results of Reference 9 than other energy solutions.  How- 
ever a difference in the dependence of the solutions upon h/p is noted: for 
higher values of h/p our results lie below those of Reference 9 but as h/p 
becomes very small, our results become larger. 

This difference in the independence of Pcr/E upon h/p might well be 
made the basis of a careful experimental investigation.  It reflects, par- 
tially, the influence of the bending portion of the strain energy which is 
generally thought to have much less significance than the stretching energy. 

The procedure employed in this report, then, when used with suitably 
chosen displacement functions, yields numerical estimates of critical pres- 
sure which tend to be lower than those obtained by applying the Rayleigh- 
Ritz method to the classical strain-energy procedure. 
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TABLE I 

R ■ RATIO OF RESULTS OF PRESENT INVESTIGATION TO THOSE OF REFERENCE 4 

a = 85° 

ß R h/p 

1.032 0.0038 
1.102 0.00191 

0.041911 1.154 0.00127 
1.194 0.000954 
1.309 0.000477 

1.0199 0.00366 
1.116 0.00183 

0.08045 1.177 0.00122 
1.232 0.000916 
1.372 0.000458 

0.9517 0.00339 
1.054 0.00169 

0.1489 1.121 0.00113 
1.168 0.000848 
1.317 0.000424 

0.6787 0.00277 
0.7840 0.00139 

0.3043 0.8377 0.000924 
0.8924 0.000693 
0.9899 0.000347 

0.6104 0.00213 
0.7111 0.00106 

0.4666 0.7765 0.000708 
0.8066 0.000531 
0.9081 0.000266 

0.7131 0.00145 
0.8038 0.000725 

0.6363 0.8753 0.000483 
0.9100 0.000362 
1.0291 0.000181 

a = 30° 

ß R Wp 

0.7186 0.00107 
0.8336 0.000535 

0.4641 0.9056 0.000357 
0.9546 0.000268 
1.0B71 0.000134 

0.8547 0.000732 
0.9751 0.000366 

0.6340 1.045 0.000244 
1.1045 0.000183 
1.248 0.0000915 

1.068 0.000448 
1.212 0.000224 

0.7760 1.235 0.000149 
1.305 0.000112 
1.462 0.000056 

1.271 0.000207 
1.296 0.0001045 

0.6965 1.355 0.0000690 
1.411 0.00005175 
1.477 0.00002588 

1.298 0.0001092 
1.355 0.0000546 

0.9454 1.391 0.0000364 
1.458 0.0000273 
1.505 0.00001365 

1.365 0.0000562 
1.436 0.0000281 

0.9719 1.465 0.00001873 
1.505 0.00001405 
1.604 0.000007025 

-18- 



rl 

Pte.0) 

/ 

V / 

ro fo\. 
/ 

FIGURE IA FIGURE   IB 

DEFINITION OF COORDINATE SYSTEM 

-19- FIGURES   IA &   IB 



■20- FIGURE 2 



10,000 p 

1000.000 - 

100.000 

10.000 

o 

aO|UJ 

1.000 - 

0.100 

0.010 - 

0.001 
0.1      0.2       0.3      0.4     0.5      0.6     0.7     0.8     0.9 

ß 

CRITICAL PRESSURE FOR CONICAL FRUSTRA 

a =  15° 

'•p' 0.02 

.-»0.01 

0.005 

0.002 

>-p - 0.001 

>-p = 0.0005 

0.00025 

,-p ■ 0.0001 

1.0 

-21- FIGURE 3 



I 000 ET 

100.0000 

10.0000- 

1.0000- 

o 

o I u 

O.IOOOr 

0.0010- 

0.0001 

_  \ 

2   \ 
""" P = 

h 

0.02 

0.01 

2 \ 
h 

0.005 

*m     \ h 
0.002 

=—-Nw 

__  h 
P = 

P   = 

0.001 

0.0005 

1  
  1
 

1 
ll
ll
ll

 

h 
0.0002S 

1  
 1 

ll
ll
ll

 

h 

P 
0.0001 

1 1 I 1 1 1 1     1 \ 
0.1      0.2      0.3      0.4     0.5      0.6       0.7     0.8     0.9      1.0 

ß 

CRITICAL PRESSURE FOR CONICAL FRUSTRA 
a = 30° 

-22- FI6URE U 



1000 

100.0000 - 

10.0000 r 

I.0000 =■ 

b I ui 

0.1000=- 

0.0100 - 

0.0010 =■ 

0.0001 

! V 
i_V \^___ j^ 

:    \< 

-\ ^^--—_ 
 ^ h 

Illlll l  h_ 

1 
1 

11
11

1 
   

   
 1 

  
 1 

h 
   0.009 

-     N. 

A       X^_ h 
-—y: = o.ooi 

\     x. 

"\ ^^"^^ 

h 
,____ •— = 0.0005 

r \^__ h 
  -—=n nnn9R 

- \ 

r ^^_ h 
 . —-ß = 0.0001 

— 

    
0.1      0.2        0.3      0.4      0.5     0.6     0.7     0.8      0.9        1.0 

ß 

CRITICAL PRESSURE FOR CONICAL FRUSTRA 
a = 45° 

-23- FI6URE 5 



1000 

loo r 

10 

l - 
o 

0. Ir 

o.oi - 

0.001 - 

0.0001 

- \ 

mm               ^L 

h 
— p- 0.02 

h 
— p-0.01 

I i   i     IIIIII I 

r-r 

h 
—-p- 0.005 

h 
— -p- 0.002 

"p - 0.001 

=—\ 
h 

—-p= 0.0005 

1 l 1 1 1 

h 
— "p = 0.00025 

h 
— -p - 0.0001 

1 1 1 1 
0.1 0.2     0.3      0.4     0.5     0.6     0.7     0.8       0.9      1.0 

ß 

CRITICAL PRESSURE FOR CONICAL FRUSTRA 
a = 60° 

-24- FIGURE 6 



10.00000 

I.00000 

0.10000 
<0 o 

Olui 

0.01000 

0.00100 

0.00010 

— = 0.02 
p 

= 0.01 

— = 0.005 
p 

— = 0.002 
p 

— =0.0005 

— = 0.00025 
P 

■ —=0.0001 

n™™» I I I I I  
"ÖTi      Ö73      ÖT3      57if        ÖT5      DT6      577      578      ÖT9      UJT 

CRITICAL PRESSURE FOR CONICAL FRUSTRA 
a = 75° 

-25- FIGURE 7 



10.00000 

1.00000 

0.10000 
«0 o 

O  I Ui 

0.01001 

0.00100 

0.00010 

0.00001 

= 0.02 

■ = 0.01 

0.0005 

— =0.00025| 
p 

' —= 0.0001 
p 

I   I   I   
0.1      0.2       0.3      0.4      0.5      0.6      0.7      0.8      0.9      1.0 

ß 

CRITICAL PRESSURE FOR CONICAL FRUSTRA 
a   =   85° 

-26- FIGURE 8 



APPENDIX A 

DERIVATION OF STRAIN-DISPLACEMENT RELATIONS 

The exact nonlinear strain-displacement relations for curvilinear 
coordinates have been formulated and are well known.  See, for example, 
Novozhilov10 page 59, where they are presented in the form: 

en = en +7 

e22 " e22 + 

e33 = e33 + 7 

e12 = e12 + ell 

,2 ♦ 
(l 

eir +l~e12 + w3l  + fce13 " w2 

e22     + 

'33 
2  +    f!3  + 

12 
w3     +  e22 ' — + (¥"*) 

(^iMPfH 

(A-l) 

ei3 = ei3 + enRr + "z) + e33Hp w2j + hrr + w3 
'23 CO 

) 

(^'^^H^lfiM' e23 = e23 + e22 l^F - wl) + e33(^ + wl] + 

When the usual thin shell orthogonal coordinate system (a-^, a.g, z) 
is used, (a-^ and a, being lines of principal curvature on the shell's 
middle surface, and z perpendicular to both of these) we have: 

1  Bu    1  9An w 
!11 1 + z/R-]_ lA1 Ba-^  A-]A.g Baj 

v + 
Ri 

'22 
1  Bv    1 

+ 
BAc w 

1 + z/Rg IAg Bag  A-jAg Ba^ 
u + 

Re 
(A-2) 

ezz  ezz 
Bw 

Bz~ 

-27- 



1    /_l  Bv_  _I_    BAX \    1   /l 3u    1  BA^ \ 
12   (l+z/R1) I Ax Bax  AXA2 Bag  i  1 +z/Rg W\.g Bag A-|Ag 'da1   J 

Bu      1   / 1 Bw    u 
;13 " clz = 

e23 

Bz  1 + Z/R-L [A-^   Ba-,^  R-L 

Bv      1   /1 Bw    v ' 
2z  Bz  1 + z/Rg I Ag Bag  Rg 

Bv      1   / 1  Bw   v 
1 " " Bz  1 + z/Rg \T^    Ba^ ~ Rg~j (A-2) 

Bu     1   / 1 Bw   u \ 
Sw 2  Bz  1 + Z/R-L ^Ax Ba-!^  Rj^ 

1  Bv    1  BA 
2a>„  = 2^ =  ■— — -— —-±  u u3 " ^z 

1 
1 + Z/R-L^A-L Bax  A-^Ag Ba 

1  Bu     1   BA 
* v 

1 + Z/R2\A2 ^ia2      ^1^2 ^1 

where: a)-,, wg, a)z are the components of the rotation vector cU, R]Rp are 

the principal radii of curvature in the a-,, a.g directions, u, v, w are 

the displacements in the a-^, ag and z directions, and A]Ag are related 

to the Lame coefficients of the transformation from rectangular to curvi- 

linear coordinates by: 

H-L = A-L (1 + z/Rx) Hg = Ag (l + z/Rg). 

By employing the Kirchhoff hypothesis (Reference 10) that "normals 
to the undeformed middle surface go over into normals to the deformed 
middle surface, and undergo no extension," and by assuming that the dis- 
placements vary linearly in z: 

u = u + z0       v = v + zi/>      w = w + z ^ ,      (A-3) 
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it is possible to express the strain-displacement relations entirely in 
terms of the middle surface displacements (Ü, v, w). 

Novozhilov (Reference 10) finds, for example, that; 

X 

A   <      A   \     A    A 
'13' '221 '23 B12 

c23 

11 + c22 

(1 + e-, -,) + e '13 c21 

A 
+ er + e 11 e22 12 e21 

\ 

>   (A-4) 

where 

:11 

-22 

;12 

Bu 
A 
V 

da-. 

1  Bv 

A2 ^2 

1  Bv 

A 
u 

'23 Bou Re 

BA-, 
A1A2 **. 

BAc 

A-jAo da -^ 

u   BAn 

A-^ Ba-^  A-jAg Bag 

1 Bw A 
u 

13 " ÄI Ba-. *r 
1 3u 

Bag 

A 
V 3A2 

21 A1A2 Ba-i 

1 Bw A 
V 

A 
W 

IT 

A 
W 

R^ 

>   (A-5) 

S 

Substitution of these relations into Equation A-l yields what 
Novozhilov terms a "strong bending theory" - viz. , one in which no assump- 
tions have been made on the magnitude of deformation other than that it 
is one of small strains.  This formulation, however, is not only unwieldy 
it is unnecessarily general for most thin shell purposes. 
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Most authors simplify the above equations by using an order of magni- 
tude argument in comparing the various terms involved in the strain ex- 
pressions.  However, this procedure fails to give proper attention to the 
fact that buckling is a geometrically nonlinear, if physically linear, 
phenomenon.  By physically linear we mean that elongations and shear are 
much less than unity.(small strains) and do not exceed the proportional 
limit.  This justifies the use of a linear stress-strain law (Hooke's law). 
By geometrically nonlinear we mean that deformations may be quite large 
(despite small strains) due to the existence of angles of rotation so 
large that they may not be neglected in the determination of the strains. 

Novozhilov shows that when elongations and shear are small compared 
to unity and rotations are less than unity but large compared to elongation 
and shear, then it is necessary to retain only those terms of the order of 
the squares of the rotations in the nonlinear portion of the strain 
expressions. 

For thin shells [(l + z/R-^ 
of Kirchhoff's hypothesis (ezz = 
approximate set of strain displacement relations.  We write 

■= 1, (l + z/R2) ■= l], and assuming validity 
elz = 

€2z °°  °) we may empl°y "the following 

11 

22 

12 

;11 

'22 

1 ,     2 

= e 12 

- (< 

C01CO 

+ COr, 

1^2 

> 
(A-6) 

Introducing Equations A-2, A-3 and A-4 into these, we have as the 
basis for an "intermediate" bending theory of thin shells (analagous in 
its degree of accuracy to the nonlinear VonKarman plate equations): 

11 

;22 

11 + — (£>g^  + CJJ2) + zfk 

22 
,A p    A     p. 

CO 

11 
2k15 . * 
  + Cur] 

e12 = e12 + e21 " w 

+ z(l 

'12 l21 

A , 

k22+^ *h 
^12 ~ k21 

+ z2r>ll 

- ) + z2^22 > (A-7> 

lw2 + z [k12 + k21 + — ~  —— j  + z ^12 
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where: 

1    Bu v       BA-.        W 
; =                +             i    +      
11      A1   Ba-^       ^Ag    Bag       R^ 

1     dv u        dAg        W 

+     1A2 + _ '22      Ao   3aQ       A-|Ao    3a-,       R 

A 1    Bv u       BA-^ 
12      A-^   da-^       A-^Ag    Bag 

A 1    du v       3Ag 
e21  " Ag   3ag      AxAg    Ba- 

A 1    3w u 
613  "1^   Ba~^ "  % 

1    Bw v 
23 =Ä^  Ba^ "  Rg" (A-8) 

-,A A 
A                   1    Bw v 

2a)..  ■ _ \p + —   ——  -   
Al    ^2 R2 

_A A 

„* j. 1 3W U 

2Wo   =  0   -         +   d A1    Bax      Rx 

A A 
1   Bv ü     BA-,        1   Bu v       BA A 1       OV U CH.^ 

"3 Ax Bax      AxAg Bag      Ag Bag      A-^g    ^ 

1   B0 0     BAX       ^ 

11      Al ^i      A1A2 ^a2      Rl 

IB«// 0     BAX 

12      A-^ Ba-^      A]Ag Bag 

k    --H. -JL 
13      Ax Ba-L "  Rx 
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"22 
_1_ ~&P 0     3A2 

A2 Ba2      AXA2 3ax 
X/R; 

1   dcp ^     3A2 

A2 3a2      A]^A2 Ba^ 

L23 A2 Ba2 
0/Rp 

(A-8) 

and,   finally: 

4> A       A 

13 (1  + ePP)   + es,e '22 23c12 13 

I A / -. A \ A A 
i// = - e?a  (1 + e-i-J   + e-j^e 11'       c13c21 23 

>V A AA AA A A 
= ell +  e22 +  elle22 ~  e12e21 =   ell +  e22 

(A-9) 

We observe that to be consistent we neglect terms of the order &^\     in 4>y 
i// and X  since we have already neglected terms of this order in e^i.     We 
also neglect terms of the order Z^TJ^J. 
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APPENDIX B 

DETERMINATION OF CHANGE IN POTENTIAL OF EXTERNAL FORCES 

For the undeformed cone, a point on the middle surface of the shell 
is given by the coordinates {£,&).     These may be related to rectangular 
coordinates by means of the equations: 

x = r cosö = (ro -£ cos<x)cos 6 

y = r sinö = (ro - £ cosa)sin 8 

z = £ sina 

(B-l) 

FIGURE (B-l] 

For the deformed cone, a point having original coordinates £,&  has 
final rectangular coordinates X, Y, Z given by: 

X = (r + w)cos 6- v sinö 

Y = (r + w)sin 6 * v cosö 

Z = (£ +u)sin a . 

>  (B-2) 
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From these we obtain Gauss' fundamental coefficients E, F and G by means 
of the relations: 

E = Xf
2 + Yf

2 + Zf
2 

= {(1 + u^)2sin2a + (w^ - cosa)2 + v^2} 

F = XfXe  + YiYe  + Z^1e (B-3) 

= (l + u,)uesin
2a + v^(ve + w + r) + (w^ - v) (w* - cosa.) 

G = Xö
2 + Ye

2  + Zö
2 

= (u^sina)2 + (r + w + vg)
2 + (w^-v)2. 

An element of area on the (deformed) curved surface is given by 

dS = \/EG - F2 d£d£ = Ddfdö, (B-4) 

hence the volume enclosed by the deformed middle surface is: 

///dv = If ZnzdS = J/Zn„Dd^dtf + J/ZdS (B-5) 
lat. surface      ends 

where nz is the z component of the unit normal vector to the deformed 
middle surface. 

But from differential geometry (Reference 3), 

> (B-6) 
Dnz = XeYg  - Y0Xf 

v^(wg-v) - (r + w)^(ve + r + w). 

Now the volume enclosed by the undeformed conical shell is given by: 

1 sina 
Vl (Al + A2 ♦ \/W) (B-7) 
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where An and Ao are the area of the top and bottom cross section of the 
cone. 

Hence, the change in volume during deformation is: 

AV = JJsina (£ + u){v.(wö -v) - (r + w)^(vö + w + r)}d£d0 

• aJlAi ♦ e^Ag)) ^p ^ ♦ A2 ♦ ^ ♦ Agj 
^ (B-8) 

+ sin i 

where e is the average extension of the ends of the cone.  The work done 
by the uniform external pressure is then given by p*AV. 
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APPENDIX C 

(a) TABULATION OF I* THROUGH XIX** 

I* = /8*(2. 19846) -/33(10.2868) + /S2(20.1370) -/8(21. 6493) 

+ 12.3367 -/3_1(4. 93479) 

II* = £2(4.60870) -£(11.6848) +7.40219 -/ö"1(4.93479) 

III* = /ß4!-. 161731) + /S3(. 709972) + ß2(-l. 18121) + /8(. 942477) 

+ (-.471239) 

IV* = /Ö2(-. 682751) + ß( 1.570795) + (-1.570795) 

V*  = /35(-1.159947)   + /3*( +6. 903993)   +/33(-20. 51448)   + /32( 30. 16964) 

+£(-24.7400)   +   (9.89600) 

VI*  = /82(-4.801058)   + /S(-16.82460)   +   (21.47553)   + rg)(-9. 30186) 

+(-^2j (4.65093) 

VII*  = /8*(. 087005)   + /S3(-.424009)   + £2(.75)   + /8(-.5) 

VIII*  = /05(-. 250022)   + /8*( 1.50159)   + /S3(-3. 62159)   + y82(4. 24) 

+ /8(-2. 12) 

IX*  - /Ö5(. 0285192)   + /34(-. 174009)   + /S3(. 424008)   + /Ö2(-.ö) 

+ /8(.25) 

X*  = /94(. 910570)   + /ö3(-5.3610)   + /32( 13.08704)   + /8(-16.9493) 

+  12.33699  +   (l//3) (-4.93479) 
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XI* = /S2(36.8676) + /3(-162. 955) + (292.0113) + (l/ß) (-275.848) 

+ (1//S2) (121.761) + (1//S3) (-48.7044) 

XII* = /S2(l. 608703) + ,Q(-5.68480) + (7.40219) + (l/ß) (-4.93479) 

XIII* = /S2(.25) + (/S)(-.5) 

XIV* - ß2(-2.059795) + /3(8. 314152) + (-12.38122) + (l//3) (8. 38915) 

XV* ■ /S5(-l. 79703) + /34(12.49638) + /33(-37.3091) ♦ /32(61. 96213) 

♦ /S(-61. 82351) + (37.01096) + (l//S) (-12. 33699) 

XVI* = /S5(-. 625055) + /8*(3. 75397) + /33(-9. 053968) + /S2(l0.60) 

+ /S(-5.30) 

XVII* = /S2(-. 157609) +/3(1.05544) + (-2.220657) + (l/ß) (1.48044) 

XVIII* = /Ö2(4. 93479) + /S(-19. 73919) + (29.60876) + (l/ß) (-19. 73917) 

XIX* = /S5(-. 171116) + /8*( 1.044054) + /33(-2. 54405) + /82(3.0) 

+/9(-1.5). 

Il** 

(b) TABULATION OF Ij* THROUGH In** 

sin^ dx    d 

T     ** 12 /.  "I" ~~~   " - dlog(l -aw)   -  Ix** 

V* - J 

I4** = J 

0 1 - ax 

.7T cos2x dx 

0 1 - ax 

-7T sin2x dx 

O 1 - ax 

V cos2x dx 

log(l-an)  -   (cos2dCi (Y) + sin2dSi (Y)J 

d   [sin2dCi(Y)  -  cos2dSi(Y)] 
2b 

2d 

o   (l-ax)3 

_d 

2 (1 -   an)2 I6 

2b 

2d 
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i **. r sin2x dx . ^3 
5      '    o   (l-ax)3 " a 

1     _1 

d ~ b 
2d2 Ig 

■r **       r" sin2x dx r, o T6      = /   T; v\ = " d3log(l-/3)  -  2d2i   ** 
o(l- ax)«5 -1- 

rTr  sin2x dx 
7** = S   77 T? "  2d2log(l-a7r)   + 4dl,** 

o(l- ax)2 *- 

T     ** I8 
rn sin^x dx 
5   T, T? = - dI3 o  (1 -ax)2 ö 

V* r-n   COS 2x dx 

^o   (l-ax)2 = d (V*'T) 

-■■10 
rn xsin2xdx _ 0 
J     -J- Tp   =    -  dl^*   -    d2   Ig** 

o  (1 - ax)2 -1 ° 

-r    **       rw x2sin2x dx P „       ^      7r    9 111      = /   1 T5" = "  2d2 I, ** - d3 I« ** + — d2 
±J- o   (1 - ax)2 L ° 2 

where: 

1 7T 
d= — = —     b=d-7T 

a      ß 

and 

Ci(Y) 
2b r2b    cosy 

-    J           dy 
2d J2d        y 

Si(Y) 
2b       r2b      sin y 

- J   dy 
2d        2d y 
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